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Reactivity Dynamics in Atom—Field Interactions: A Quantum Fluid Density Functional
Study
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Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, entropy,
electrophilicity and nucleophilicity indices and uncertainty product is studied within a quantum fluid density
functional framework for the interactions of a helium atom in its ground and excited electronic states with
monochromatic and bichromatic laser pulses with different intensities. Time dependent analogues of various
electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum
polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities
of the generated higher order harmonics on the color and intensity of the external laser field are obtained.

I. Introduction wheref(F) is the Fukui functio®? and 5 (F,F') is the hardness

' . kernel given by!
Interaction of noble gas atoms with strong laser pulses has

become an important area of research work for both experi- | 62F[p]

mentalist$? and theoreticiarfs'® mainly because of the genera- n(r,r) = 2 W “4)

tion of the higher-order harmonits!?in this process as well P P

as exotic phenomenon like chaotic ionization of He in a whereF[p] is the HohenbergKohn universal functional of
microwave field!3 It is also important to know that how the =~ DFT.18

atom would respond to the external field so far as its reactivity =~ The complete characterization of BiRparticle system acted

is concerned. Electronegativity(y) and hardnesg(») are two on by an external potentia{T) requires onlyN andv(f). The
cardinal indices of chemical reactivity. Paulfgntroduced the ~ response of the system subjected to a changeanfixed v(r)
concept of electronegativity as the power of an atom in a is given byy andr while the linear response functifimeasures
molecule to attract electrons to itself. The concept of hardnessthe response of the system wheffi) is varied at constarit. If
was given by Pearséhin his hard-soft acid-base (HSAB) the system is kept under the influence of a weak electric field,
principle which states that, “hard likes hard and soft likes soft”. polarizability (x) takes care of the corresponding response. A
These popular qualitative chemical reactivity concepts could Shannon-type entropg(was introduced by Deb and Chattéfaj
have been quantified in density functional thé8§{DFT). The within a quantum fluid density functional framework. During

quantitative definitions for electronegativifyand hardneg8 molecule formation the electronegativities of the pertinent atoms
for an N-electron system with total enerds can respectively ~ get equalized®**A stable configuration or a favorable process
be given as is generally associated with maximum hardm&g€minimum
polarizability?®-31 and maximum entrog¥ values. The condi-
9E tions for maximum hardness and entropy and minimum polar-
X=—Hu= _(a_N)v(F) (1) izability complement the usual minimum energy criterion for
stability.
and Recently Parr et & have defined the electrophilicity index
(W) as
_UYeE) 1o 0
7 2(3N2)v(?) 2(3’\')11(?) @ V=2 ®)

We also study here the behavior of\(9)/ a valid candidate for

the nucleophilicity index. Note that the quantity {1 W) will

also serve the purpose of a nucleophilicity index. It has also

been shown recenflythat the uncertainty product or the phase

space volume\(ps) is @ measure of quantum fluctuations and

1 hence has a bearing in the studies of quantum domain behavior
== T,7) f(T') o(T) dF dT’ 3 of classically chaotic systems.

TN ff”( YHT) (1) @) It has been already demonstra¥ethat in case we focus our

attention to a specific atom/molecule taking part in a chemical
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In egs 1 and 2« and v(F) are chemical potential (Lagrange
multiplier associated with the normalization constraint of
DFTY718 and external potential, respectively. An equivalent
expressiofi for hardness is
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of an atom/molecule with an external field of the strength of  The kinetic energy functional for this problem is takerR%as
the order of the “chemical reaction field”. A molecular reaction
dynamics can be envisagédby monitoring the time evolution T[p] = 1 ,Vp-Vp
- o . ol f—dr +

of the electronegativity of a specific atom from its isolated atom 8 P
value to the equalized molecular electronegativity value as well — o
as by studying the dynamic profiles of hardness and entropy C.J[p™°dT — a(N)A [—F—=-dF (8a)
and how they get maximized and that of the minimization of 1+ rp
polarizability during the course of the chemical reaction. In the 0.043
present work we study the interaction of a He atom in its ground 3\ 22273, 3\13
electronic state and an excited electronic state with laser fields C= (1_0)(3” ) A= 30(;) (8b)
of different colors and intensities. The effect of the frequency
and the field strength of the external laser field on the overall a(N) = a, + a,N "+ a,N
reactivity of the atom in its various electronic states vis-a-vis
the validity of the associated electronic structure principles in 8=0.1279, & =0.1811, a,=-0.0819 (8c)
a dynamical context as well as the intensities of the generated
higher — order harmonics would be understood in this study. In eq 8a the first term is the Weizsker term and the rest
The theoretical background of the present work is provided in constitutesTyw. This kinetic energy functional is one of the
section 1. Section Ill contains the numerical details, and the best known functionals as it posses8esxcellent local and
results and discussions are given in section IV. Finally, section global behavior as well as an acceptable functional derivative.
V presents some concluding remarks. The presence of the Weizdeer term is also known to be
important3®

The explicit form forE,. is taken as

Il. Theoretical Background

Time dependent density functional the®rgTDDFT) asserts Eldpl = Edpl + Edpl (9a)
the unique invertibility of the mapping between the time ) ) ) o
dependent external potential(f,t) and the densityp(F,t). whereE,[p] is the Dirac exchange functional modified in the

Therefore, all dynamical properties of the system are functionals SPirit of Becke’s functionat? as follows'*
of p(f,t) and current densifj(r,t). To know p(7,t) andj(r,t) of s
a dynamical system at all times, a quantum fluid density _ _ 413 P =]
functional Fheor§/3 (QFDFT) was formulated through an Edel Cx fp dr + f1_|_ (r2102/3/0_0244)dr
amalgamation of TDDF¥ and quantum fluid dynamic¥.38

The overall dynamics is studied by solving the following 3 ,
generalized nonlinear Schtinger equatio?? (GNLSE): C, = (E)(&rz)l % (9b)
1, N U and EJp] is a Wigner-type parametrized correlation energy
2V T Ver(T 0| ¢(T.0) = ot =v-1 (6a) functional given by?
with 0 —
EJlp] = — dr 9c
A==/ 9.81+ 21.43p 13 (c)
¢(T 1) = p' exp(&) (6b)

The external TD potential for the present problem of He atom
and interacting with a laser field linearly polarized mdirection

may be written as

T(T.0) = [¢eVin — $im Vel = pVE (6¢) )
V(T ) = —=+€lz foramonochromatic pulse (10a)
whereé is the velocity potential. r

Atomic units are used throughout this paper unless otherwise 2 ) .
specified. In the present work we solve this equation to study =— [ t<€2z forabichromatic pulse (10b)
the temporal evolution of various dynamical quantities including
chemical reactivity parameters associated with the interactions,ynere
of external laser fields of different colors and intensities with a
He atom in its ground and excited electronic states. The effective €l = e sin(w,) (10c)
potential of eq 6a is given by

and

— 6TNW 6Exc P(T,t) — -
V(T =5 =+ 5 5 [ = 0T ved T () €2 = 0.5[sin(wgt) + sin(,b)] (10d)
whereTyw andEy: denote the non-Weizsker part of the kinetic To have slow oscillations during and after the laser source
energy and exchange-correlation energy functionals, respec-being switched ong is written in terms of the maximum
tively. It may be noted that this treatment is general and may amplitudeey and the switch-on timé as
be applied to systems (atoms and molecules) with more than
two electrons as well. However, for a complete treatment, e=¢fitt for O=<t=<t (10e)
vibrational and rotational degrees of freedom in addition to .
electronic one are to be considered in the case of molecules. =¢  Otherwise (10f)



Reactivity Dynamics in AtomField Interactions

For the present problem a time dependent energy quag(ily,
can be define®¥ 38 as the following density functional

E(0) =3/ p(T DIVE? dF +Tlp] + E o] +

1, p(T.0) o(F'0)
5 f fp p

T =T
where the first term represents the macroscopic kinetic energy
which vanishes for a state with zero current density, for example
in the ground state of a system. A similar time dependent total
energy functional has been used before by other wofkdrse
associated chemical potential may be defined as

dF dF' + [v(F ) p(F ) dF (11)

_OE(M _1 .., oOT 0B,
== = =5IVE o
p(T ) -, -
fﬁ_mdr + o (D) (12)

Now as a TD extension to Gordy's wdtkthe TD chemical
potential becomes equal to the total electrostatic potential at a
pointT. (cf. eq 12), viz.,

p(T.0)

———dr + v, (T.t) (133)
[Te— T

—)=u®)= [

wherer. is the point where the sum of functional derivatives of
total kinetic energy and exchange-correlation energy is zero,
ie.,

oT N OE,. “o
op Op

SIvEr + (13b)
It may be noted that the condition 13btat O is equivalent to
that of the ground-state DR 'sincej(f,0) = 0. Politzer et al.
44 had shown through the application of the electronegativity
equalization principle that values provide very good estimates
of the covalent radii of the atoms.

To follow the hardness dynamics using eq 3, the Fukui
function is modeled as follow3

f(r) = _s0 (14a)
JEGLL
where the local softnessr) is taken a®
o —T)
N =577 (14b)

The hardness kernej(r,/') (eq 4) is calculated using the
following local forme® for F[p]

Flo] = T[] + Vop] (14c)

where the local kinetic eneréfyand electror-electron repulsion
energy® are taken as

4/3
— o
7] = C [p°°dT + C, [—L——=dF (14d)
14t
0.043

and

Vo] = 0.79370 — 12° [p*2dF  (14e)
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These local functionals are used because of the simplicity in
the calculation of the second-order functional derivative (eq 4)
and the associated Fukui function within this local mégel

The dynamic polarizability is written as

a(t) = [Dyg O F (1)

whereDin(t) is the electronic part of the induced dipole moment
given as

(15a)

Ding (1) = [20(T 1) dT

and F4(t) is the zzcomponent of the external field.
The TD entropy is defined &%

(15b)

= [ {g —In p(F.0) + g In(k@(T,t)/Zn)} ko(F.) T (16a)

wherek is the Boltzmann constant ardi{r,t) is a spacetime
dependent temperature given in terms of the kinetic energy
densityts(F,p(r,t)) as?

17T HI°
200 m)] (16b)

The phase space volume or the uncertainty proddgthas
been show#"*7to be an important diagnostic of the quantum
signature of classical chatsas related to the compactness of
the electron cloud® For the present problem it may be defined
as

Vs = { [p; — 0%, — (0PI — (BOPIz — 2)°G ™
17

(F3p(F D) = SKOCT ) o(F) +

A sharp increase iWt) signals a chaotic motidhsince it is
a measure of the associated quantum fluctuatiéns.

To generate the harmonic spectrum, the induced dipole
moment,Ding(t) is Fourier transformed to obtainedw). It has
been showt? that the absolute square of the Fourier transform,
|d(w)|? is roughly proportional to the experimental harmonic
distribution.

I1l. Numerical Solution

Since the electron density varies rapidly near the nucleus and
relatively slowly elsewhere the variables are transformed as
follows

y=p¢$ (18a)
and

p=x (18b)
where p is one of the cylindrical polar coordinated,f,2).
The azimuthal symmetry of the physical system allows us
to analytically integrate over 8 ¢ < 27. The GNLSE (eq 6a)
takes the following form in the transformed variables after the

¢ integration,
()2 G229 -6-

43] X \ax? a7 W

A leapfrog-type finite difference scheme has been adopted
to numerically solve the eq 19 as an initial boundary value

problem. An alternating direction implicit (ADI) method is
employed to generate the density at the second time step from

vy

N

y

p (29)

2veﬁ)y =2i
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Figure 2. Time evolution of Chemical potentialY when a helium atom is subjected to external electric fields (GS, ground state; ES, excited statgjonochromatic pulse;:{) bichromatic pulse.
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TABLE 1: Calculated Reactivity Indices (au) att = 0 for He Atom in Different Electronic States?
electronic state;

electronic configuration x n Vps S W Yw o |d(wo)|?
1S; 18 0.2591 0.3920 0.5568 1(? 4.0040 0.0856 11.6822 0.63361C° 6.01734
P; 1s2p 0.2044 0.1315 0.506710° 2.6528 0.1589 6.2933 0.379910 5.1615

aValues ofa and|d(wg)|? are at the time step at the end of one ADI cycle as the He atom interacts with the monochromatic fielcFn@i1.

the input density which is required for the leapfrog scheme to both the electronic states are shown by the dynarcofile
start. A detailed discussion on the derivation of eq 19 and the which is a highly satisfactory feature considering the compli-
numerical method for its solution can be found elsewRgfe. cated round about way of the calculationuofA small portion
To launch the numerical solution, near-Hartré@ck densities of this work was published elsewhel®lt is important to note
of He atom in the'S ground staf® and alP excited state of  that the amplitude ofi-oscillations becomes very large fey
the 1s2p electronic configurati®hhave been employed. The = 100 for both the electronic states and for both monochromatic
temporal mesh size was taken/sts= 0.025 au. Different spatial ~ and bichromatic pulses.
grid sizes were chosen for the ground and excited-state Figure 3 presents the time evolution of hardness. After the
calculations. For the ground and excited states, we tok= initial transientsy; attains a more or less steady value which is
Az = 0.05 au andAx = Az = 0.036 au, respectively. Larger larger for the ground state than for the excited state, a signature
domains forx andz were taken when the excited-state density of MHP. It may be noted that all quantities are not equally
was used. sensitive to the external perturbation. Some oscillate in phase,
We choose’ = 5, wo = 7, w1 = 2wo and three different  some out of phase and others remain steady. Unlike oscillation
maximum amplitude values = 1075, 0.01 and 100, respec- in y, it is observed thay maintains a steady value but for the
tively. To our knowledge, the calculation of so many reactivity initial transients. It may be due to the fact that the first-order
indices in a time dependent situation for a system in both ground variation in energy due to external perturbation is significantly
and excited electronic states interacting with external fields of larger than the corresponding second-order one. Overall dynam-
different colors and intensities is done here for the first time. ics may be envisaged as follows. The nuclear Coulomb field
being central in nature the atomic electron density distribution
IV. Results and Discussions will have spherical symmetry. Once the external z-polarized
The time evolution of different reactivity parameters are |aser pulse is switched on there will be a competition between
depicted in Figures 48. All quantities are in atomic units. ~ the two to govern the electron density distribution, viz., the latter
Unless otherwise specified, in all the figures, GS and ES refer Would try to make it cylindrically symmetric. When the intensity
to the ground and excited states of the helium atom, respectively,0f the external field is very small, it is essentially the atomic
and a solid line and scattered points respectively signify density with some amount of pulsation. For an oscillating atom,
monochromatic and bichromatic pulses. Three different field it may be assumed that those quantities will oscillate in phase
intensities corresponding tg = 1075, 0.01 and 100 are shown  Which are strongly dependent on the electron density distribu-

separately. tion. With an increase in the strength of the external laser field
Figure 1 presents the time dependence of the external field@n oscillating dipole will result which would emit radiation
with different frequencies and amplitudes. including higher order harmonics. In the present work we also

Initial values ¢ = 0) of all the reactivity parameters Study this harmonic spectrum. This dynamical picture is
(essentially the corresponding values of the He atom) but for corroborated by the fact that for a weak field eyenscillations
o(t) and|d(wo)|? (values for these quantities are reported after are not clear-cutin phasg WI.'[h external field because the effect
the end of the ADI cycle since they explicitly depend on the of nL_JcIear Coulomb f|g|d is still not overcome by the Iaser pulse.
response of the atom when it interacts with the external field) In Figure 3 we magnify the steady parts of tirofile and
are presented in Table 1. Both electronegativity and hardnessShow in respective insets. It is now transparent thatefo
values for the ground state are larger than the correspondingl0 ° there is no visible effect of the external field, fes =
excited state values. Since a system is generally more reactived-01 still competition is going on while foe, = 100 the
in the excited state it is expected from the maximum hardness dynamics is totally dominated by the external field and the
principle?527(MHP). LargerV,s value for the excited-state refers N phase oscnlatlo_n in the-profile are clearly manlfested. for
to larger quantum fluctuations than in the ground state. Ground- Poth the electronic states and for both monochromatic and
state entropy is larger than the corresponding excited-state valuePichromatic laser pulses.
as expected from the maximum entropy principlVEP). Dynamic polarizability is presented in Figure 4. The fre-
Helium is comparatively less electrophilic and more nucleophilic quency of oscillation ino is twice that of the external field.
in its ground state than in the excited state. The He atom is lessFor any extremum in the external field there corresponds to a
polarizable in its ground state than in the excited state as would minimum ino and the latter blows up when the former becomes
have been dictated by the minimum polarizability principtét zero. Here also if we compare the respective mininouvalues
(MPP). Intensity of the first harmonic is larger in the ground (amin) for the two electronic statesmin for the ground state is
state for the monochromatic pulse with= 0.01. smaller than that of the excited state, which is in conformity

Temporal evolution of the chemical potential is depicted in with MPP.
Figure 2. Magnitude of: is always larger in the excited state. Figure 5 shows the phase volume or the uncertainty product,
It exhibits characteristic oscillations. But for the initial transients Vs It confirms that the quantum fluctuations are always lafger
the oscillations in« is in phase with the external field. Reactivity  in the excited state than in the ground state as is also expected
profiles help in visualizing the overall dynamical process. Only from the more compactness of the ground-state electron éfoud.
when the field intensity is very low are the oscillations not For this quantity in phase oscillations are seen only for the
clearly in phase with the external field. Once the intensity of ground state of the atom interacting with the monochromatic
the external field is increased beautiful in phase oscillations for pulse of ¢¢ = 100. If the field is not very strong both
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